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Phase transition between the cholesteric and twist grain boundaryC phases

I. Luk’yanchuk*
L. D. Landau Institute for Theoretical Physics, 117 940 Moscow, Russia

and Departamento de Fisica, Universidade Federal de Minas Gerais, Caixa Postal 702, 30161-970, Belo Horizonte,
Minas Gerais, Brazil

~Received 20 June 1997!

The upper critical temperatureTc2 for the phase transition between the cholesteric phase (N* ) and the twist
grain boundaryC phase with the layer inclination tilted to the pitch axis~TGBCt) in thermotropic liquid
crystals is determined by the mean field Chen-Lubensky approach. We show that theN* -TGBCt phase
transition is split in two with the appearance of either the TGBA or the TGB2q phase in a narrow temperature
interval belowTc2. The latter phase is novel in being superposed from two degenerate TGBCt phases with
different ~left and right! layers inclinations to the pitch axis.@S1063-651X~97!03912-3#

PACS number~s!: 64.70.Md, 61.30.Gd
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I. INTRODUCTION

A twist grain boundary~TGB! state that appears as a
intermediate state at the cholesteric (N* ) –smectic ~Sm!
phase transition in chiral thermotropic liquid crystals w
predicted theoretically by Renn and Lubensky@1# in 1988
and then, one year later, was independently observed ex
mentally@2,3#. Since that time a wealth of properties of th
new state were discovered in a number of experimental@4–
13# and theoretical@14–17# investigations.

The results of these studies and the results of the pre
paper are summarized in the phase diagram of Fig. 1 wh
the parameterst,s' ~whose meanings will be explained i
Sec. II! are controlled by the following experimental cond
tions: temperature, concentration, pressure, etc. The re
for such a variety of intermediate phases is that, the di
N* -Sm transition cannot occur in a continuous way since
cholesteric twist of the director,n(r )5„0,sin(k0x),cos(k0x)…,
is incompatible with the smectic layered structure. The l
one in chiral liquid crystals is known to be of either Sm-A
Sm-C* type: in Sm-A the directorn is parallel to the layer’s
modulation vectorq whereas in Sm-C* it is tilted with re-
spect toq by a constant angleu0 and forms a conical pre
cession along the normal to layers. Therefore, the transi
occurs either by the first order untwisting ofn(r ) or via
formation of intermediate TGB phases. The actual seque
of the intermediate phases depends on the final Sm state
occurs at low temperature. There is only one intermed
phase~TGBA) when the transition goes to Sm-A @1,14# and
a series of phases when the transition goes to Sm-C* @15#.

The general structure of the TGB state is shown in F
2~a!. The compromise between the cholesteric twist ofn(r )
and the layered structure of Sm-A,C* is achieved by forma-
tion of a set of rotated smectic slabs~blocks!, normal to
those that follow the pitchn(r ). The slabs are separated b
grain boundaries consisting of a series of equally spa
screw dislocations that provide the junction of the layers
adjusting slabs. The slab widthl b , dislocation spacingl d ,
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director pitchP, and layer spacingd are related by the fol-
lowing topological constraint@1#:

2p l bl d5Pd. ~1!

Coupling of the director with the modulation vectorq results
in the unbending ofn(r ) close to the block center. Whe
temperature decreases the director pitch and slab width
verge with further untwisting ofn(r ). Finally, they tend to
infinity corresponding to the transition to the Sm state.

The variety of TGB phases in Fig. 1 is provided by th
different internal structure of TGB blocks that are shown
Figs. 2~b!–2~e!. Generally, TGB blocks are reminiscent o
the final Sm state that occurs at low temperature. Theref
the TGBA block is just the slab of Sm-A shown in Fig. 2~b!
that is confined by grain boundaries, the layer’s modulat
vectorq being parallel to the directorn in the slab center@1#.
Similarly, the TGBC slab is provided by smectic layers th
are inclined ton by the angle;u0. The inclination, however,
can be done in other ways: when tilted layers are either p
allel to the pitch axisx as in Fig. 2~c!, or tilted to it as in Fig.
2~d!. We call these phases TGBCp and TGBCt . The blocks

FIG. 1. The phase diagram of TGB phases. The model par
eterst,s' are controlled by the experimental conditions. We pred
a new TGB2q phase and penetration of the TGBA phase in the Sm-
C* region wheres'.0. Dotted linesa, b, and c present the
N–Sm-A–Sm-C diagram in the nonchiral case.
574 © 1998 The American Physical Society
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57 575PHASE TRANSITION BETWEEN THE CHOLESTERIC AND . . .
of the TGBCp and TGBCt phases actually have the structu
of slabs of differently oriented Sm-C, as distinguished from
its chiral analog Sm-C* by the absence of the director pr
cession. Under certain conditions a transition S
C→Sm-C* occurs inside the TGBC slabs@15#. The corre-
sponding TGBC* phase that appears close to the bulk S
C* phase~see Fig. 1! will be not considered in this paper.

Originally the TGBCp phase was assumed to be an int
mediate TGB state at theN* –Sm-C* transition@15# ~there it
was called TGBC). However, x-ray experiments@7# and the-
oretical estimations@17# demonstrate that the TGBCt phase
is indeed more stable. In@17# this phase was called th
melted grain boundary~MGB! phase to stress that the sme
tic order parameter vanishes at grain boundaries becaus
the small distance between screw dislocations. We pre
however, to use the TGBCt notation to emphasize the geo
metrical structure of this phase.

In this paper we revise the calculation of@15# for the
upper critical temperature Tc2 (MA-M0-M1-MC line in Fig.
1 for theN* -TGBC transition, taking into account the rece
proof of the stability of the TGBCt phase@7,17# that was not
considered in@15#. We confirm and expand the estimation
@15# to the whole region of parameters. In addition we c
culate the principal parameters of the TGBCt phase: upper
critical temperature and slab widthl b that can be measure
experimentally.

Several features that modify the phase diagram calcul
in @16,15# follow from our analysis. The TGBA phase that
was shown in@1,14# to be stable when the transition is to th
Sm-A phase penetrates also into the Sm-C* region as a nar-
row stripe in between theN* and TGBCt phases, and fin-
ishes in the tetracritical pointM0 far inside this region. The
N* -TGBCt transition is split either by this TGBA stripe or
by the narrow region of the new TGB2q phase. The TGB2q
slab is superposed from two equivalent Sm-C populations
with left and right layers inclined to the pitch axis as show
in Fig. 2~e!.

FIG. 2. Structure of different TGB phases.
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This new phase can be viewed as a kind of standing d
sity wave quantized by the grain boundaries. In reality it c
be observed in between theN* -TGBA-TGBCt-TGB2q tet-
racritical point M0 and the pointM1. Location of these
points is calculated in this paper. The upper critical tempe
ture Tc2 should have a kink atM0. Under certain conditions
the enhancement~oscillation! of Tc2 betweenM0 and M1
can be observed.

A remarkable feature of the TGBA phase was noted in@1#
to be an analogy with the Abrikosov vortex state in sup
conductors in a magnetic field. This completed an analo
between the superconducting transition in metals and
phase transition between nematic (N) and Sm-A phases in
liquid crystals, first pointed out by de Gennes@18,19#. In the
present article we show that the TGBCt phase is the analog
of the mixed state in superconductors with a spa
modulated order parameter~like Larkin-Ovchinnikov-Fulde-
Ferrel phases@20,21#!, providing that modulation is perpen
dicular to the magnetic field. Another interesting analogy
discuss is the similarity between the TGBA-TGBCt transition
and the transition between the symmetry differing phase
an ‘‘unconventional’’ superconductor UPt3 in the magnetic
field @22#.

II. BASIC EQUATIONS

A. The chiral Chen-Lubensky model

On a quantitative level, the appearance of the TGB stat
described by the Chen-Lubensky~CL! model @23#, which is
known to be a quite general approach in explaining vario
phase transitions between cholesteric~nematic! phases and
modulated smectic phases. In this model the cholesteric
smectic phases are described by two coupled order pa
eters: the twisted directorn(r ) and the space modulate
complex functionc(r ). The modulated molecular density
given by the real part ofc(r ). The resulting energy consist
of two parts:

FCL5Fc1FF , ~2!

where the elastic Frank energy

FF5 1
2 K1~divn!21 1

2 K2~n•curln2k0!2 ~3!

1 1
2 K3~n3curln!2

gives the twisted texture of the director. In the choleste
phasen(r )5„0,sin(k0x),cos(k0x)…. The chirality is provided
by the parameterk0. Whenk050, expression~3! reduces to
the elastic energy of the nematic phase withn5const.

The smectic state is described by the Ginzburg-Lan
~GL! functionalFc , which has a finite-q instability for the
order parameterc(r ) provided by a gauge derivativ
D5¹2 iq0n:

Fc5a~T2TNA!ucu21 1
2 gucu41„Cininj1C'~d i j

2ninj !…~Dic!~Djc!* 1D~D2c!~D2c!* . ~4!

We take the quartic in the gradient term in the isotrop
form D(D2c)(D2c)* , which is slightly different from
the original CL model where this term was written
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576 57I. LUK’YANCHUK
D'(d i j 2ninj )(dkl2nknl)(DiDjc)(DkDlc)* . This does not
change the final results but simplifies the calculations.

Now we give a brief review of the properties of the C
model. In the nonchiral case~when k050), a second orde
phase transition from nematic to smectic phases takes p
@23#. The type of the smectic phase depends on the sig
C' ~terms withCi andD are assumed to be positive!. When
C'.0, a transition to the Sm-A phase with the order param
eter c(r );c0eiq0n•r occurs atT5TNA . When C',0 an
additional transversal ton modulation occurs, resulting in
Sm-C order parameterc(r );c0eiq•r with q5(q0n,qC).
This modulation is stabilized by the quartic gradient term
wave vectorqC5~2C'/2D)1/2, which gives the layer’s incli-
nation angle asu05arctan(qC /q0)5arctan(2C'/2Dq0

2)1/2.
The N–Sm-C transition occurs atTNC5TNA1C'

2 /4D.
In a chiral case@14# ~whenk0Þ0), the situation is more

complicated since the gauge derivatives and anisotropic
efficients in the gradient terms in Eq.~4! depend on the di-
rection of n that is not uniform in a space. This provides
coupling of the order parametersn(r ) andc(r ) leading to
an untwisting ofn(r ) when the smectic layers are forme
Such a process occurs either directly, by the first order tr
sition, or via the intermediate TGB state. In both cases
final smectic phases are either Sm-A or Sm-C* . The scenario
of the phase transition depends on the parameters of the
model. We formulate those conditions below.

When the directN* –Sm-A,C* transition takes place, th
critical temperatures are calculated by comparison of the
ergies of theN* and Sm-A,C* phases@14#. The N* –Sm-
A–Sm-C* tricritical point in the (T,C') plane was found to
be

~T* ,C'
* !5@TNA2~gK2!1/2k0 /a,~gK2

3!1/2k0/2aK3q0
2#.

~5!

The transition lines are given by

TN* A5T* , C'.C'
* , ~6!

TAC* 5TNA1~TN* A2TNA!C'
* /C' , C',C'

*

TN* C* 5TN* A1~C'2C'
* !2/4aD, C',C'

* .

When the transition occurs via an intermediate TGB sta
the critical temperatures and the detailed structure of
TGB state are provided by a nonuniform solution of the G
equation obtained from Eq.~4!:

aS T2TNA2
C'

2

4D Dc1gucu2c

5~Ci2C'!~nD!2c2DS 2D21
C'

2D D 2

c, ~7!

whereÂ2c5Â(Âc).
In this paper we are interested in the structure of the T

state just below theN* -TGB phase transition that takes pla
at the upper critical temperature Tc2. We consider the cas
when C',0, that is, when the system has a tendency
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form the Sm-C* phase at low temperature. In the followin
subsection we derive the basic equations that describe
transition.

B. Cholesteric-TGB transition

The order parameter in the TGB state belowTc2 is given
by a periodic superposition of rotating blocks equally shift
by a distancel b :

c~r !5(
m

eigmf ~x1mlb!eiq'mr. ~8!

The component of the modulation vector transverse to
pitch q'm5q0„0,sin(k0mlb1w),cos(k0mlb1w)… follows the
director twistn(r )5„0,sin(k0x),cos(k0x)… with phase advance
~retardation! w. Factorseigm are the degenerate phason d
grees of freedom@1#.

The block profile function f(x) is localized within the
block width l b and, together with the phasew, provides the
structure of the TGB slab. In the TGBA phasew50 andf (x)
is a centered bell-shape function@which has a Gaussian pro
file exp(2k0x

2/2q0) at C'@0 @1##. The structure of the
TGBCp slab @Fig. 2~c!# is given by a centered bell-shap
function f ( x̄ ) and nonzero advancing~retarding! phase
anglew.u0 @15# that results in the tilting of the layers pa
allel to the pitch axis. In the TGBCt phase the anglew is
equal to zero andf (x) is modulated in thex direction as
exp(6iux). This corresponds to the right~left! transverse in-
clination of the layers as shown in Fig. 2~d!. The profile
function f (x) of the slab, located at the origin, and phasew
are found by solving Eq. ~7! with the substitution
c(r )5 f (x)eiq'0r. f (x)eiq0(z1wy….

Several simplifications are used in Renn-Lubens
theory. Usually the block widthl b is much smaller than the
cholesteric pitchP52p/k0. Therefore, on the scale ofl b the
twist of n(r ) is minimal and is approximately written a
n(r )'„0,k0x,12(k0x)2/2…. Next, just belowTc2 the ampli-
tude of f (x) is small and only the terms linear inf (x) are
relevant in Eq.~7!.

The corresponding linearized equation forf (x) andw is

a~T2TNA2C'
2 /4D ! f 52Hf , ~9!

where

H5DS 2]x
21~q0k0!2~x2w/k0!21

C'

2D D 2

1~Ci2C'!
q0

2k0
4

4
~x222xw/k0!2.

This equation has a set of localized eigenstatesf n(x) with
a discrete spectrum ofeigentemperatures Tn . The upper
critical temperatureTc2 of the N* -TGB transition is pro-
vided by the maximal value ofTn . The block profile func-
tion is given by the corresponding eigenfunctionf nc2(x).

We assume further thatw50, that is, the parallel layers
inclination according to@17# does not occur. The justification
of this approximation will be presented in Sec. III D.

It is convenient to use the dimensionless units
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x̄ 5q0x, ]x5q0
21]x , s i5

Ci

4Dq0
2

, s'52
C'

2Dq0
2

,

~10!

t5a~T2TNA!/Dq0
4 , b5k0 /q0 , H5H/Dq0

4 .

We discuss first the values of parametersb,s' ,s i . Pa-
rameterb has a sense of the power of the cholesteric tw
Usually in chiral liquid crystals the interlayer smectic spa
ing is much smaller than cholesteric pitch havingb!1. The
small tilting angleu0 results ins'5tan2u0!1. In contrast,
parameters i , which is related to the ratio of the layer com
pression elastic constantCiq0

2 to the layer curvature energ
Dq0

4, is larger than 1@17,24# and therefore is much large
thans' .

NeglectingC' in comparison withCi in the last term of
Eq. ~9!, we rewrite it in dimensionless units as

~ t2s'
2 ! f 52Hf , ~11!

where

H5~2]x
21b2 x̄ 22s'!21s ib

4 x̄ 4.

The order parameterc(r ) of the TGB state is reproduce
by substitution of corresponding eigenfunctionf (x) into Eq.
~8!. Then, one can calculate the free energyFCL ~8! of the
TGB state as a function of the slab widthl b or, more conve-
niently, as a function of the geometrical factorl b / l d . The
actual value of this ratio is found by minimization ofFCL
with respect tol b / l d . It was found @1# that l b / l d .0.9«
whenC'@0 and the TGBA phase has a Gaussian profile
the slab. The factor« depends on the relative strengths
cholesteric splay~bend! and the twist elastic energie
K1,3/K2. It varies from«50 whenK1,3/K250 ~the calcula-
tion in this case is reduced to minimizing the Abrikos
factorb5^c4&/^c2&2), to «;1.5 whenK1,3/K2 is large. We
will use this result to evaluatel b / l d in the TGBA,Ct phases
whenC',0.

III. RESULTS

A. General

In this section we calculate the eigenstates of Eq.~11! that
correspond to the upper critical temperaturetc2, and discuss
the block structure just belowtc2 for the different types of
TGB state ats'.0.

Note that eigentemperaturestn ~including tc2) and eigen-
functionsf n(x) are generally functions ofb,s' ,s i . The fol-
lowing scaling properties result from Eq.~11!:

tn~b,s i ,s'!5s'
2 tn~b/s' ,s i,1!,

f n~ x̄ ,b,s i ,s'!5 f n~s'
1/2x̄ ,b/s' ,s i,1!. ~12!

The parameters' can be excluded if one considers the d
pendencetn(b) on the rescaled coordinatesb/s' ,t/s'

2 .
To proceed with the diagonalization of Eq.~11! for

s'.0, recall first the results of@1,14# for the opposite case
of s',0 when a transition occurs to the TGBA phase. When
t.
-

-

us'u is large enough, the operatorH was shown@1# to be
truncatable to the more simple form of the harmonic osci
tor 22s'(2]x

21b2 x̄ 2)1s'
2 . The lowest eigenstate give

the Gaussian profilee2b x̄2
of the TGBA block and the upper

critical temperaturetc252s'b. This result can be improved
if one considers the residual part ofH as a perturbation:

tc252s'b2~113s i/4!b2. ~13!

The second term is smaller than the first one
2s' /b.0.510.38s i , which is the condition of applicabil-
ity of the approximation. The opposite case ofs' /b;0 will
be discussed later.

Figure 3 shows the result of numerical diagonalization
Eq. ~11! for different s i when s'.0. We use thet/s'

2 ,
b/s' coordinates to trace the two highest eigentemperatu

FIG. 3. Oscillating behavior of the eigenstates of the lineariz
chiral CL model as a function of the model parameterst/s'

2 ,
b/s' , and s i . The concurrence between two nearly degener
highest eigentemperatures~the maximal one corresponds totc2)
leads to splitting of theN* -TGBCt transition by appearance of e
ther the TGBA phase or the intermediate TGB2q phase. Dashed
lines in ~c! present the asymptotics calculated in the text.
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578 57I. LUK’YANCHUK
~the maximal one corresponds totc2) as function ofb. Note
first the concurrence of two eigenstates with close eigent
peraturest1 and t2 that give the upper critical temperatu
tc25max(t1 ,t2). These levels often cross whenb changes,
resulting in the oscillating behavior oftc2(b). The oscilla-
tions of tc2(b) are strong ats i50 and more pronounced sti
at large values ofs i .

The appearance of these nearly degenerate eigensta
related to two equivalent, right and left inclinations of laye
in the TGBCt slab. The corresponding block profile fun
tions, f R( x̄ ) and f L( x̄ ), however, cannot be the eigenfun
tions of Eq.~11! since they do not possess the definite pa
with respect to the symmetry operationx→2x, which is a
property ofH. The proper eigenstatesf 6 with eigentempera-
tures t6 are constructed as superpositions of both popu
tions as f 65 f R6 f L that results in the TGB2q phase just
below tc2 . The function f 6(x) has cos- (sin-! like oscilla-
tions and can be viewed as a standing wave between
grain boundaries. The effects of commensurability of t
wave with block widthl b stabilize either the even cos-like o
the odd sin-like behavior as the lowest state to have a v
ishing order parameter at the grain boundaries. The bl
width l b changes as a function ofb that alternates the orde
of the f 6 eigenstates leading to the oscillations intc2(b).

The tendency to Sm-C slab formation at lower tempera
tures results in the further transition from the TGB2q to
TGBCt phase determined by the lowest fromt1 ,t2 critical
temperatures renormalized by the nonlinear termgucu2c in
Eq. ~7!. Below this second transition, one of the populatio
starts to be suppressed and a block profile function is c
structed now from both thef 1 and f 2 eigenstates to form the
TGBCt phase with either af L or f R profile of the slab.

Therefore, we conclude that theN* -TGBCt transition is
always split by the intermediate TGB2q phase. At highb the
period of oscillations off 6(x) becomes larger than its loca
ization length, and the lowest eigenstatef 1(x) has the
single-peak profile of the TGBA phase. TheN* -TGBA-
TGBCt-TGB2q tetracritical pointM0 corresponds therefor
to the highest inb intersection oft6 eigentemperatures. A
follows from Fig. 3, the appearance of the TGB2q phase
becomes practically invisible whenb decreases below th
second intersection oft6 at the pointM1. We expect, there-
fore, that only the odd TGB2q phase betweenM0 and M1
can be observed in reality.

Equation~11! can be solved analytically in the two lim
casess i50 ands i@1, when the operatorH can be trun-
cated to a more simple form. Although the cases i50 does
not correspond to the real situation ofs i.1 we consider it
first since it clarifies the qualitative structure of the pha
diagram that conserves also at larges i .

B. Cases i50

Whens i50, operatorH is a polynomial Schro¨dinger op-
erator for the harmonic oscillator:

H5s'
2 22s'~2]x

21b2 x̄ 2!1~2]x
21b2 x̄ 2!2. ~14!

Therefore, it has the same set of oscillator eigenfunction

f n~ x̄ !5Hn~Ab x̄ !e2 x̄ 2b/2, ~15!
-

s is

y

-

he
s

n-
k

s
n-

e

whereHn are the Hermitian polynomials. The correspondi
eigentemperatures are given by the equation

tn52s'~2n11!b2~2n11!2b2. ~16!

The oscillations oftc2(b)5maxtn(b) @Fig. 3~a!# are related to
the quantum numbernc2 of the lowest eigenstate tha
changes withb, unlike what occurs in the harmonic oscilla
tor where then50 eigenlevel is always the lowest one.

When b.s'/2, the n50 eigenlevel does correspond
the upper critical temperaturetc252s'b2b2. The block
profile function has a Gaussian shapee2 x̄ 2b/2 of the TGBA
phase. The slab width is calculated as in@1#:

l̄ b52.2«1/2/b1/2. ~17!

When b,s'/2, nc2 is given bys'/2b21/2 rounded to
the nearest integer. The oscillating upper critical tempera
tc2(b) tends tos'

2 when b vanishes as shown in Fig. 3~a!.
The slab width is given by the width of the polynomi
Hnc2(Ab x̄) as

l̄ b5s'
1/2/b. ~18!

The block profile function f nc2( x̄ ) oscillates as
cos(l x̄1pnc2) with period l52p/(2nc2b)1/2.2p/s'

1/2.
This corresponds to the slab of the TGB2q phase, which is
the superposition of two Sm-C slabs with layers inclined a
u056s'

1/2. The parity of f n( x̄ ) alternates withn, resulting
in the different parity off nc2

and f nc261 eigenstates. So, th

admixture ofi f nc261 eigenfunctions with the TGB2q profile

function f nc2
that occurs at some critical temperature belo

tc2 corresponds to the TGB2q-TGBCt transition.
The tetracritical pointM0, where N* -TGBA-TGBCt-

TGBCt phases meet is given byb05s'/2, t053s'
2 /4.

C. Cases i@1

In the limit s i@1 one can neglectb2 x̄ 2 in Eq. ~11! and
rewriteH as

H5~]x
21s'!21s ib

4 x̄ 4. ~19!

The eigentemperatures and eigenfunctions of Eq.~19! have
in addition to Eq.~12! the following scaling properties:

tn~b,s i ,s'!5s'
2 tc2~bs i

1/4/s',1,1!, ~20!

f n~ x̄ ,b,s i ,s'!5 f n~s'
1/2x̄ ,bs i

1/4/s',1,1!.

So, tc2(b,s i ,s') at large s i is defined by the universa
function tc2(b,1,1). We therefore use the scaled coordina
bs i

1/4/s' , t/s'
2 for larges i to tracetc2(b) that is obtained

from numerical diagonalization of Eq.~19! @Fig. 3~c!#.
An important conclusion that follows from Fig. 3~c! is

that the phase diagram for larges i possesses the same fe
tures as fors i50. It includes the domains of the TGBA and
TGB2q phases that precede the transition to the TGBCt
phase. The TGBA phase exists above the tetracritical po
M0 and the TGB2q phase is important in between the poin
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M0 andM1. From Fig. 3~c! one locates the pointsM0, M1 at
bs i

1/4/s'.0.36 andbs i
1/4/s'.0.19.

Consider now the transition to the TGBC phase at low
field b!0.36s' /s i

1/4 ~i.e., below M0) and to the TGBA
phase at high fieldb@0.36s' /s i

1/4 ~i.e., aboveM0). Both
the asymptotics fortc2(b) are shown in Fig. 3~c! by the
dashed lines.

1. Low fields: b!0.36s' /s i
1/4

At low field when the block widthl̄ b diverges, one can
assume that blocks have the structure of Sm-C slabs where
the inclination of layers to the pitch axis is equal to its bu
value u056arctans'

1/2. Then the block’s profile function

f ( x̄ ) has a high-frequency modulatione6 is'
1/2x̄ where1 and

2 signs correspond to right and left tilting, respectively. Th
factor can be excluded by shift:]x→]x6 is'

1/2 in Eq. ~19!.

Next, we neglect]x
2 in comparison with 2s'

1/2]x ~justification
of this approximation will be given below! and writeH as

H52~2s'
1/2]x!

21s ib
4 x̄ 4. ~21!

Rescalingx̄ asz5(b4s i/4s')1/6x̄ simplifies Eq.~21! to an
unharmonic oscillator operator:

H5~16s'
2 s i!

1/3b4/3~2]z
21z4!. ~22!

Finally, tc2(b) and the corresponding eigenfunction of E
~21! are given by

tc25s'
2 21.06~16s'

2 s i!
1/3b4/3, ~23!

f c2~ x̄ !5e6 is'
1/2xg1„~b4s i/4s'!1/6x̄ …,

where 1.06 andg1(z) are the lowest eigenvalue and eige
function of the unharmonic oscillator equatio
(2]z

21z4)g151.06g1. The block width l̄ b is estimated as
the characteristic width;(4s' /b4s i)

1/6 of the functiong1.
More accurately, we can calculatel̄ b in the same way as
was done in@1# for the TGBA phase, using the suitabl
Gaussian approximation forg1(z) ase20.4z2

. Finally we get

l̄ b53.2«1/2~s' /b4s i!
1/6. ~24!

At first glance, the eigenstate~23! is doubly degenerate
with respect to a sign change in the modulation ph

e6 is'
1/2x̄ . However, this is an artifact of the approxim

tion: the term]x
2 we are neglecting lifts the degeneracy a

splits the transition onto two. In particular, in between t
points M0 and M1 @Fig. 3~c!# ]x

2 favors the odd TGB2q

phase given by the linear combination (eis'
1/2x2e2 is'

1/2x̄)g1

52ig1sins'
1/2x̄ . The TGBCt profile appears by means of a

additional transition when the even combinati
;2ig1coss'

1/2x̄ admixes.
This effect, however, is as tiny~and negligible belowM1)

as ^]x
2&.1/ l̄ b

2 is smaller than̂ 2s'
1/2]x&.2s'

1/2/ l̄ b , where

l̄ b is given by Eq.~24! and b!0.36s' /s i
1/4. The above

estimation confirms the self-consistency of the approxim
tion we made. Conditionb!0.36s' /s i

1/4 is equivalent to the
.

e

-

requirement that the wavelength of the transversal mod
tion l;s'

21/2 is smaller than the block widthl̄ b given by
Eq. ~24!. This clarifies the physical meaning of the approx
mation.

2. High fields: b@0.36s' /s i
1/4

Neglecting nows' in comparison with]x
2 we simplifyH

as

H.]x
41s ib

4 x̄ 4. ~25!

Then tc2 and the corresponding eigenfunction are given b

tc2.21.39s i
1/2 b2, f c2~ x̄ !5g2~s i

1/8b1/2x̄ !, ~26!

where 1.39 andg2(h) are the lowest eigenvalue and eige
function of the operator]h

41h4. Unlike the low field case,
the eigenstate~25! is nondegenerate and described by t
even bell-shaped functiong2, the lowest odd eigenstate be
ing well separated fromg2 as shown in Fig. 3~c!.

The eigenfunctiong2(s i
1/8b1/2x̄ ) gives the TGBA-like

profile of the block. The block widthl̄ b is calculated using
the results of@1# by noting thatg2(h);e20.55h2

:

l̄ b52.1«1/2/s i
1/8b1/2. ~27!

The approximation we made is self-consistent sin

^]x
2&.1/ l̄ b

2 is indeed greater thans' whenb@0.36s' /s i
1/4.

Considering the truncated termĥ52s']x
21s'

2 as a pertur-
bation, one improves the asymptotic fortc2(b). The correc-
tion to tc2 is given by ^g2uĥug2&.2gs i

1/4s'b1s'
2 where

g5^g2u]h
2 ug2&.0.5. Finally, we get

tc2.s i
1/4s'b21.39s i

1/2b2

521.39~si
1/4b20.36s'!210.18s'

2 . ~28!

In fact, the asymptotic~28! is valid also in the region of
small negatives' /b. It makes the analogous expressions
@14,15# more precise and explicitly determines all the co
ficients.

D. Stability of the TGB Ct state

Having calculated the transition temperature and struc
of the TGBCt phase we discuss now its stability, name
whether this phase has the highest upper critical tempera
tc2 ~or, alternatively, the highest upper critical field,bc2)
among other TGB states and under which condition a tr
sition fromN* to Sm-C* occurs via the intermediate TGBCt
phase rather than via the direct first order transition.

To answer the first question, consider the compet
TGBCt and TGBCp phases that can be formed at th
N* –Sm-C* transition. Dozov’s estimation of the ratio o
their upper critical fields @17# gives the factor
2(Ci/2Dq0

2)1/452(2s i)
1/4, which is larger than 1 as long

as s i.1. Therefore,bc2(TGBCt).bc2(TGBCp) and the
TGBCt phase is indeed more preferable.

Our calculations are in agreement with Dozov’s estim
tion. To show this, comparetc2(TGBCt) given by Eq.~23!
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with tc2(TGBCp) calculated in@15#:

tc2~TGBCp!.s'
2 21.06~11si!

1/3~16s'
2 s i!

1/3b4/3. ~29!

~We recalculated the numerical factor 1.06.! The ratio of the
upper critical fields for the TGBCt and TGBCp phases~at
given temperature! is expressed as (11s i)

1/4, which is
larger than 1. This is consistent with Dozov’s estimati
whens i@1, but gives a more precise value of the numeri
factor. Although the starting GL functional~4! is slightly
different from that used in@15# @see our remark after Eq
~4!# , this does not change the final result: one can show
in a relevant limit,s i@s' , expressions forbc2(TGBCt) cal-
culated for both the functionals are the same. Note that s
dard perturbational analysis proves that the TGBCt and
TGBA phases are stable with respect to small parallel tilt
of the layers when anglew in Eq. ~9! becomes nonzero.

To answer the second question, note that transition via
intermediate TGB state is not preempted by the dir
N* -Sm transition when the upper critical temperaturetc2 for
the TGB state is larger than the thermodynamical temp
ture tc of the direct transition. Recall first the calculations f
the TGBA phase whens',0 @1#. Comparison oftc2 given
by Eq.~13! @without (113s i/4)b2# with theN* –Sm-A tran-
sition temperatureTN* A @Eq. ~6!#, which in dimensionless
units is written as

tc5~gK2!1/2b/Dq0
3 ~30!

gives the following criterion for stability of the TGBA phase:

k2.1/A2, where k25~gK2/2s'
2 !1/2/2Dq0

3 . ~31!

Whens'.0 the tc2 transition temperature for TGBCt is
given by Eq.~23!, and theN* –Sm-C* transition tempera-
ture TN* C* @Eq. ~6!# in dimensionless units is written as

tc.s'
2 2

~gK2!1/2

Dq0
3 ~12s'K2/2K3!b. ~32!

The criteriontc2.tc is always satisfied whenb is small
enough, since at smallb, tc is linear inb and tc2 is propor-
tional tob4/3. So, strictly speaking, one can always obtain t
TGBCt phase by preparation of the nearly racemic bin
mixture of the left and right chiral molecules. The abo
consideration is valid only iftc(b) has a positive slope, tha
is, whens',2K3 /K2. This condition was used in@15,16# as
a criterion for stability of the TGBC state. It is not very
likely, however, to find a system where this condition w
not be the case since in conventional Sm-C* liquid crystals
s',1 and 2K3 /K2.4 –6 @19#. In contrast, the practica
identification of this small-b TGBCt phase can be quite dif
ficult because of the very large cholesteric pitch. We form
late the realistic criterion for the existence of the TGBCt
phase as a condition when it is stable in the vicinity of t
critical point M0 . On the basis of the plot in Fig. 3~c!, one
obtains thattc2.tc nearM0 if

k2.0.5s i
1/4. ~33!

At realistic values ofs i.10–100@24# this condition practi-
cally coincides with criterion for stability of the TGBA phase
l
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~31!. The conditions~31! and~33! determine the position o
the critical pointsMA andMC on theN* –Sm-A,C* transi-
tion line of Fig. 1 where the TGBA and TGBC phases first
appear.

E. Resume

We have revised the calculations of@15# for the N* -
TGBA,Ct phase transition. The line of the upper critical tem
perature on phase diagram of Fig. 1 is reconstructed on
quantitative level and can be present in the relevant li
s i.1 as follows:

On the left side of the pointMA that is defined by condi-
tion ~31!, the directN* –Sm-A first order transition takes
place. The critical temperature of the transition is given
~30!.

Between the pointsMA and M0 the transition to the
TGBA phase occurs. The pointM0 is placed at
0.36s'.s i

1/4b, inside the regions'.0. The upper critical
temperaturetc2 of the transition is given by Eq.~13! when
2s' /b.0.510.38s i , and by Eq.~28! when s' /b varies
from a small negative value tos' /b.s i

1/4/0.36. Both the
asymptotics are matched in the intermediate region of ne
tive s' /b.

In between the pointsM0 and MC the sequence of tran
sitions N* –TGB2q-TGBCt takes place, the location of th
point MC being given by the condition~33!. The TGB2q
phase exists in a small temperature interval belowtc2. It
practically disappears on the right of the pointM1 where
s' /b.s i

1/4/0.19. The upper critical temperature in betwe
M0 andMC is given by Eq.~23!. The junction oftc2 transi-
tion lines for TGBA and TGB2q /TGBCt phases forms a kink
in the tetracritical pointM0.

On the right side of the pointMC the direct first order
N* –Sm-C* transition occurs at the critical temperaturetc ,
as is given by Eq.~32!.

We have also calculated the widthl̄ b of the TGB slab at
T5Tc2 with respect to different parametersb,s' ,s i @Eqs.
~17!, ~18!, ~24!, and ~27!#. We summarize these results
Table I by the ratiol b / l d5 l̄ b / l̄ d5 l̄ b

2b/2p, resulting from
the topological constraint~1!.

IV. ANALOGY WITH SPACE-MODULATED
SUPERCONDUCTIVITY

In this section we discuss a remarkable similarity betwe
the TGB state and the mixed~vortex state! in superconduct-

TABLE I. Location of the tetracritical pointM0 and the ratio
l b / l d in different limit cases. Parametere varies from 0 when
K1,3/K250 to 1.5 whenK1,3/K2 is large.

Location ofM0 l b / l d
a

b0 t0 TGBA TGB2q,Ct

b.b0 b,b0

s i!1 0.5s' 0.75s'
2 0.8« s'/2pb

s i@1 0.36s' /s i
1/4 0.43s'

2 0.7«s i
21/4 «(4s' /bs i)

1/3

aThe ratiol b / l d is given at the transitionN* -TGB whenT5Tc2. At
lower temperaturesl b / l d increases rapidly.
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ors of type II noted first in@1#. We show that the TGBC
phase corresponds to the mixed state in the ‘‘exotic’’ sup
conductors with space modulated order parameter.

Note first that, due to de Gennes@18,19# the N–Sm-A
transition is analogous to the superconducting phase tra
tion because of similarity of the transformational propert
of the order parameters: the space modulated func
c(r )5c0eq0n•r in Sm-A and the complex wave functio
C(r ) in superconductor. The translation ofc(r ) along the
modulation vectorq0n ~that is equivalent to multiplication o
c on a phase factor! corresponds to the gauge transformati
in the superconductor.

The long range twist ofn(r ) in N* plays the role of the
magnetic field destroying superconductivity. TheN* –Sm-A
transition via the intermediate TGBA phase occurs with con
tinuous Meissner-like expulsion of the twist ofn. The rows
of the screw dislocations resemble the Abrikosov vortex
tice.

The Sm-C phase is characterized by the additional, tra
versal ton modulation of the order parameter resulted fro
the negative gradient terms in the CL model. Continuing
analogy with superconductivity one can tell thatN–Sm-C
transition corresponds to the transition to the supercond
ing state with nonuniform, space modulated order parame
The TGBC phase therefore should be an analog of the mi
~Abrikosov! state of a modulated superconductor, providi
that magnetic field is perpendicular to the modulation.

On the quantitative level, the modulated superconduc
in a magnetic field is described by the GL equation

tc1guCu2C5C'~ i¹2A!2c1D~ i¹2A!4c, ~34!

whereA is the vector potential of the field:B5curlA. The
modulation of the superconducting order parameter is p
ys
r-

si-
s
n

t-

-

e

t-
r.
d

r

-

vided by the gradient term withC',0. The upper critical
field of this superconductor is calculated by neglecting
nonlinear termguCu2C and solving the corresponding eige
problem. It is easy to show that ifA is chosen in the Landau
gauge (0,Bx,0), this procedure is exactly reduced to the ca
‘‘ s i50’’ we considered in Sec. III B. According to calcula
tions of Sec. III B, this superconductor should have the
cillating upper critical field, shown in Fig. 3~a!.

It is interesting to note that although the theory of spa
modulated superconductor was considered by Larkin
Ovchinnikov@20#, and Fulde and Ferrel@21# more than thirty
years ago, to our knowledge, no direct experimental ob
vation of this phase currently exists.

Note finally another interesting analogy between t
N* -TGBA,Ct phase transition and theBc2 transition in ‘‘un-
conventional’’ multicomponent superconductor UPt3 where
the kinklike behavior ofBc2 was observed@22#. The kink
point in Bc2 in UPt3 is similar to the pointM0 in the
N* -TGBA,Ct phase diagram: both points are provided by t
intersection of eigenstates of the corresponding lineari
GL equations.
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