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The upper critical temperatufe., for the phase transition between the cholesteric phidgé and the twist
grain boundaryC phase with the layer inclination tilted to the pitch axiBGB¢,) in thermotropic liquid
crystals is determined by the mean field Chen-Lubensky approach. We show thit thi&B, phase
transition is split in two with the appearance of either the TG the TGB,, phase in a narrow temperature
interval belowT.,. The latter phase is novel in being superposed from two degenerateTi@Rses with
different (left and righ} layers inclinations to the pitch axifS1063-651X97)03912-3

PACS numbg(s): 64.70.Md, 61.30.Gd

[. INTRODUCTION director pitchP, and layer spacind are related by the fol-

lowing topological constraintl]:

A twist grain boundary(TGB) state that appears as an
intermediate state at the cholesteribl*()—smectic (Sm)

27T|b|d:Pd. (1)

phase transition in chiral thermotropic liquid crystals WasCoupIing of the director with the modulation vectpresults

predicted theoretically by Renn and Lubendiy in 1988

in the unbending ofh(r) close to the block center. When

and then, one year later, was independently observed expetsmperature decreases the director pitch and slab width di-

mentally[2,3]. Since that time a wealth of properties of this
new state were discovered in a number of experimddtal
13] and theoretica]14—17 investigations.

verge with further untwisting ofi(r). Finally, they tend to
infinity corresponding to the transition to the Sm state.
The variety of TGB phases in Fig. 1 is provided by the

The results of these studies and the results of the preseglffferent internal structure of TGB blocks that are shown in
paper are summarized in the phase diagram of Fig. 1 whergigs. 2b)—2(e). Generally, TGB blocks are reminiscent of
the parameters,o; (whose meanings will be explained in the final Sm state that occurs at low temperature. Therefore,
Sec. ) are controlled by the following experimental condi- the TGB, block is just the slab of SrA shown in Fig. 2b)
tions: temperature, concentration, pressure, etc. The reastimat is confined by grain boundaries, the layer's modulation
for such a variety of intermediate phases is that, the directectorq being parallel to the directar in the slab centefrd].
N*-Sm transition cannot occur in a continuous way since thésimilarly, the TGE; slab is provided by smectic layers that
cholesteric twist of the directon(r) = (0,sinkx),coskyx)),  are inclined tan by the angle~ 6,. The inclination, however,
is incompatible with the smectic layered structure. The las€an be done in other ways: when tilted layers are either par-
one in chiral liquid crystals is known to be of either Sm-A or allel to the pitch axix as in Fig. 2c), or tilted to it as in Fig.
Sm<C* type: in SmA the directom is parallel to the layers 2(d). We call these phases TGS and TGE,. The blocks
modulation vectoilg whereas in SnG* it is tilted with re-
spect toq by a constant anglé, and forms a conical pre-
cession along the normal to layers. Therefore, the transition
occurs either by the first order untwisting ofr) or via
formation of intermediate TGB phases. The actual sequence
of the intermediate phases depends on the final Sm state that
occurs at low temperature. There is only one intermediate
phase(TGB,) when the transition goes to SA{1,14] and
a series of phases when the transition goes toC3nm45].

The general structure of the TGB state is shown in Fig.
2(a). The compromise between the cholesteric twish@f)
and the layered structure of SmC* is achieved by forma-
tion of a set of rotated smectic slalfslocks, normal to
those that follow the pitcim(r). The slabs are separated by
grain boundaries consisting of a series of equally spaced
screw dislocations that provide the junction of the layers in
adjusting slabs. The slab widlly, dislocation spacindg,

FIG. 1. The phase diagram of TGB phases. The model param-
eterst,o, are controlled by the experimental conditions. We predict
anew TGB,, phase and penetration of the TBhase in the Sm-

C* region whereo, >0. Dotted linesa, b, and c present the

*Electronic address: lukyanc@itp.ac.ru N-SmA-Sm-<C diagram in the nonchiral case.
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This new phase can be viewed as a kind of standing den-
sity wave quantized by the grain boundaries. In reality it can
be observed in between th¢*-TGBA-TGB-TGB,, tet-
racritical point My and the pointM,. Location of these
points is calculated in this paper. The upper critical tempera-
ture T, should have a kink atl,. Under certain conditions
the enhancemer(pscillation of T., betweenM, and M ;
can be observed.

A remarkable feature of the TGBphase was noted ii]
to be an analogy with the Abrikosov vortex state in super-
conductors in a magnetic field. This completed an analogy
between the superconducting transition in metals and the
phase transition between nemathd)(and SmA phases in
liquid crystals, first pointed out by de Genrjd8,19. In the
present article we show that the T@Bphase is the analog
of the mixed state in superconductors with a space-
modulated order parametéike Larkin-Ovchinnikov-Fulde-
Ferrel phasef20,21)), providing that modulation is perpen-
dicular to the magnetic field. Another interesting analogy we
discuss is the similarity between the TH GB ¢, transition
and the transition between the symmetry differing phases in
an “unconventional” superconductor Ufin the magnetic

Screw dislocations Smectic layers

FIG. 2. Structure of different TGB phases. field [22].
of the TGB¢, and TGB, phases actually have the structure Il. BASIC EQUATIONS
of slabs of differently oriented Sr@, as distinguished from .
its chiral analog SnG* by the absence of the director pre- A. The chiral Chen-Lubensky model

cession. Under certain conditions a transition Sm- On a quantitative level, the appearance of the TGB state is
C—Sm-<C* occurs inside the TGB slabs[15]. The corre-  described by the Chen-LubenskgL) model[23], which is
sponding TGR+ phase that appears close to the bulk Smknown to be a quite general approach in explaining various
C* phase(see Fig. 1 will be not considered in this paper. phase transitions between cholestdriemati¢ phases and
Originally the TGB;, phase was assumed to be an inter-modulated smectic phases. In this model the cholesteric and
mediate TGB state at tié* —Sm-C* transition[15] (there it  smectic phases are described by two coupled order param-
was called TGR). However, x-ray experimen{3] and the-  eters: the twisted directon(r) and the space modulated
oretical estimation$17] demonstrate that the TGB phase  complex functiony(r). The modulated molecular density is

is indeed more stable. Ifl7] this phase was called the given by the real part ofs(r). The resulting energy consists
melted grain boundargMGB) phase to stress that the smec- of two parts:
tic order parameter vanishes at grain boundaries because of

the small distance between screw dislocations. We prefer, Fer=Fy+Fe, 2
however, to use the TGB notation to emphasize the geo- ,
metrical structure of this phase. where the elastic Frank energy

In this paper we revise the calculation 5] for the ) o, 5
upper critical temperature & (M a-Mo-M-M¢ line in Fig. Fr=2Ky(divn)*+3K,(n- curin—Kko) 3
1 for theN* -TGB . transition, taking into account the recent
proof of the stability of the TGB, phasdg7,17] that was not +3K3(nxcurln)?

considered if15]. We confirm and expand the estimation of . ) )
[15] to the whole region of parameters. In addition we cal-gives the twisted texture of the director. In the cholesteric

culate the principal parameters of the TgBphase: upper phasen(r)=(O,sinkox),cos((())i)). The chirality is provided
critical temperature and slab width that can be measured PY the parameteko. Whenky=0, expressiori3) reduces to
experimentally. the elastic energy of the nematic phase vm'eh_const.

Several features that modify the phase diagram calculated '€ Smectic state is described by the Ginzburg-Landau
in [16,15 follow from our analysis. The TGR phase that (GL) functional F,,, which h_as a finiteg instability for th_e
was shown if1,14] to be stable when the transition is to the ©rder pararnetenp(r) provided by a gauge derivative
SmA phase penetrates also into the Sfiregion as a nar- 2=V~ idoM:
row stripe in between th&l* and TGB,; phases, and fin- _ . 2,1 4 . g
ishes in the tetracritical poir¥l, far inside this region. The Fy=a(T=Tnal¢1*+ 2014+ (Cnin; +C (4
N*-TGB; transitipn is split either by this TGRB stripe or —nin;))(D; ) (Dj)* + D(D?y)(D?y)*. (4)
by the narrow region of the new TG phase. The TGR,
slab is superposed from two equivalent Smpopulations We take the quartic in the gradient term in the isotropic
with left and right layers inclined to the pitch axis as shownform D(D?y)(D?y)*, which is slightly different from
in Fig. 2(e). the original CL model where this term was written as
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D, (8;—nin;) (8 —ni) (DD ) (DDy)* . This does not form the SmE* phase at low temperature. In the following

change the final results but simplifies the calculations. subsection we derive the basic equations that describe this
Now we give a brief review of the properties of the CL transition.

model. In the nonchiral casevhenky,=0), a second order

phase transition from nematic to smectic phases takes place B. Cholesteric-TGB transition

[23]. The type of the smectic phase depends on the sign of

C, (terms withC; andD are assumed to be positivéVhen

C, >0, atransition to the Sm-phase with the order param-

eter (r)~ yppe'9™" occurs atT=Ty,. WhenC, <0 an

additional transversal to modulation occurs, resulting in a . :

Sm-C order parametery(r)~ €% with q=(qon,dc). Y(r)=2 emf(x+mly)etn, ®

This modulation is stabilized by the quartic gradient term at "

wave vectolc=(—C,/2D)"2 which gives the Iayer’szlncll- The component of the modulation vector transverse to the
nation angle asf,=arctanfc/qo)=arctan(-C,/2Dq3)*2. pitch g, ;= Go(0,SiNkyMly + ©),coskom,+¢)) follows  the
The N-Sm< transition occurs alyc=Tya+C%/4D. director twistn(r) = (0,sinfX),coskox)) with phase advance

In a chiral casg14] (whenk,#0), the situation is more (retardation ¢. Factorse'’m are the degenerate phason de-
complicated since the gauge derivatives and anisotropic cqyrees of freedonil].
efficients in the gradient terms in E(4) depend on the di- The block profile function x) is localized within the
rection ofn that is not uniform in a space. This provides a plock width |, and, together with the phase provides the
coupling of the order parametengr) andy(r) leading to  structure of the TGB slab. In the TGBphasep=0 andf(x)
an untwisting ofn(r) when the smectic layers are formed. js a centered bell-shape functiprhich has a Gaussian pro-
Such a process occurs either directly, by the first order trangje exp(—kp/2q,) at C, >0 [1]]. The structure of the
sition, or via the intermediate TGB state. In both cases thq-GBCp slab [F|g Zc)] is given by a centered be”-shape
final smectic phasgs_ are either @uer Sm-C*. The scenario function f(x) and nonzero advancingretarding phase
of the phase transition depends on the parameters of the C&nglecp: 8, [15] that results in the tilting of the layers par-
model. We for_mulatf those copdltlons_below. allel to the pitch axis. In the TGB, phase the angle is
e s et o e 0, sl t 2610 and (1) s modulated n e decton a

) 2Xp(*i6x). This corresponds to the rigkieft) transverse in-
ergles oi th.eN.*. and smA’C* phaseq14]. The N*-Sm- clination of the layers as shown in Fig(d2. The profile
A=-Sm<C* tricritical point in the (T,C, ) plane was found to function f(x) of the slab, located at the origin, and phase

be are found by solving Eq.(7) with the substitution
l)[,(r):f(x)eiQLOrzf(x)eiCIO(Z*‘PY).
Several simplifications are used in Renn-Lubensky
) theory. Usually the block widtty, is much smaller than the
cholesteric pitclP=27/k,. Therefore, on the scale bf the
twist of n(r) is minimal and is approximately written as
n(r)=~(0Kkox,1— (Kox)?/2). Next, just belowT, the ampli-

The order parameter in the TGB state bel®yy is given
by a periodic superposition of rotating blocks equally shifted
by a distancd,,:

(T*,CH=[Tna— (gK2) Y% /a,(gK3) Y%ko/2aK503].

The transition lines are given by

Tnea=T*, C,>CT, (6) tude of f(x) is small and only the terms linear ii{x) are
relevant in Eq(7).
Tack=Tnat (Taxa—Tna)CT/CL, C <CF The corresponding linearized equation f¢x) and ¢ is
2 —
Tyecr=Tnsa+(C,—CT)%4aD, C,<CF. a(T—Tya—C7/4D)f=—Hf, ©)
When the transition occurs via an intermediate TGB state\,Nhere
the critical temperatures and the detailed structure of the C.\2
TGB state are provided by a nonuniform solution of the GL H=D —a)2(+(qok0)2(x— olko)?+ it
equation obtained from Ed4): 2D
doKo
c? +(C—C,)——(x2—2xplKg)%
a| T=Tna— = | ¥+alyl?y 4
4D
2 This equation has a set of localized eigenst&j€s) with

v, (7) a discrete spectrum ofigentemperatures ;. The upper
critical temperatureT., of the N*-TGB transition is pro-

R o vided by the maximal value of,,. The block profile func-

whereA%y=A(Ay). tion is given by the corresponding eigenfunctifya,(x).

In this paper we are interested in the structure of the TGB We assume further that=0, that is, the parallel layers’
state just below th&l* -TGB phase transition that takes place inclination according t§17] does not occur. The justification
at the upper critical temperature ;5. We consider the case of this approximation will be presented in Sec. Il D.
when C, <0, that is, when the system has a tendency to It is convenient to use the dimensionless units

C,
:(C|—CL)(nD)21/;—D< —D?+ D
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t=a(T—Tya)/Dqd, b=Koldg, H=HI/Dg}.

We discuss first the values of parametbrs, ,o. Pa-

rameterb has a sense of the power of the cholesteric twist.

Usually in chiral liquid crystals the interlayer smectic spac-
ing is much smaller than cholesteric pitch havimg 1. The
small tilting angled, results ino, =tarffy<1. In contrast,
parameteir, which is related to the ratio of the layer com-
pression elastic constaﬁq|q§ to the layer curvature energy
Dqg, is larger than 117,24] and therefore is much larger
thano, .

NeglectingC, in comparison withC; in the last term of
Eq. (9), we rewrite it in dimensionless units as

(t—o?)f=—Hf, (11)

where
_ e _
H=(—d5+b*x*— 0o, )*+ o b?x*.

The order parametef(r) of the TGB state is reproduced
by substitution of corresponding eigenfunctibfx) into Eq.
(8). Then, one can calculate the free enerfy (8) of the
TGB state as a function of the slab widthor, more conve-
niently, as a function of the geometrical factgy/l4. The
actual value of this ratio is found by minimization &
with respect tol,/l4. It was found[1] thatI,/l4 =0.%
whenC, >0 and the TGB, phase has a Gaussian profile in
the slab. The factoe depends on the relative strengths of
cholesteric splay(bend and the twist elastic energies
K13/K,. It varies frome =0 whenK, 3/K,=0 (the calcula-
tion in this case is reduced to minimizing the Abrikosov
factor = (4™{?)?), to e ~ 1.5 whenK ; 5/K, is large. We
will use this result to evaluatk,/l 4 in the TGB, ¢, phases
whenC, <0.

Ill. RESULTS
A. General

In this section we calculate the eigenstates of (&) that
correspond to the upper critical temperatty:g and discuss
the block structure just belowy, for the different types of
TGB state ato; >0.

Note that eigentemperaturgs(includingt.,) and eigen-
functionsf,(x) are generally functions df,o, ,o. The fol-
lowing scaling properties result from E@L1):

t,(b,o o )=0cty(blo, 0|, 1),

fn(X,b,(TH,O’L)Ifn(oﬁlzx_,b/al,0'”,1). (12
The parameterr;, can be excluded if one considers the de-
pendencd,(b) on the rescaled coordinatbso ,t/of .

To proceed with the diagonalization of Eqll) for
o, >0, recall first the results dfl,14] for the opposite case
of o, <0 when a transition occurs to the T@Bhase. When
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1

FIG. 3. Oscillating behavior of the eigenstates of the linearized
chiral CL model as a function of the model parametefs® ,
b/o,, andoy. The concurrence between two nearly degenerate
highest eigentemperaturéthe maximal one corresponds tg,)
leads to splitting of the\* -TGB; transition by appearance of ei-
ther the TGB, phase or the intermediate TG phase. Dashed
lines in (c) present the asymptotics calculated in the text.

|o,| is large enough, the operatdt was shown[1] to be
truncatable to the more simple form of the harmonic oscilla-
tor — 20, (—d>+b?x?) +0? . The lowest eigenstate gives
the Gaussian profile™ 6% of the TGB, block and the upper
critical temperature ,= 20, b. This result can be improved
if one considers the residual partgf as a perturbation:

teo=20, b—(1+30/4)b% (13

The second term is smaller than the first one if
— o0, /b>0.5+0.38, which is the condition of applicabil-
ity of the approximation. The opposite caseogf/b~0 will
be discussed later.

Figure 3 shows the result of numerical diagonalization of
Eq. (1) for different o when o, >0. We use thet/a?,
b/o, coordinates to trace the two highest eigentemperatures
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(the maximal one correspondstig) as function ofb. Note
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whereH , are the Hermitian polynomials. The corresponding

first the concurrence of two eigenstates with close eigenteneigentemperatures are given by the equation

peratured, andt_ that give the upper critical temperature
teo=maxt, ,t_). These levels often cross whénchanges,
resulting in the oscillating behavior df,(b). The oscilla-
tions oft.,(b) are strong at;y=0 and more pronounced still
at large values ofr .

The appearance of these nearly degenerate eigenstate
related to two equivalent, right and left inclinations of layers

in the TGB; slab.lhe corresponding block profile func-
tions, fr(x) andf (x), however, cannot be the eigenfunc-

tions of Eq.(11) since they do not possess the definite parity

with respect to the symmetry operati@n- —x, which is a
property ofH. The proper eigenstatés with eigentempera-

turest.. are constructed as superpositions of both popula-

tions asf.=fg=f that results in the TGR, phase just
belowt.,. The functionf_.(x) has cos- (sin-like oscilla-

t,=20,(2n+1)b—(2n+1)%b°. (16)

The oscillations of.,(b) = max,(b) [Fig. 3@)] are related to
the quantum numben., of the lowest eigenstate that

Sc&anges withb, unlike what occurs in the harmonic oscilla-

tor where then=0 eigenlevel is always the lowest one.
When b>o, /2, then=0 eigenlevel does correspond to
the upper critical temperaturt-c2=2(rlg2— b2. The block
profile function has a Gaussian shage* 2 of the TGB,
phase. The slab width is calculated aq 1k
1 p=2.2212p12 17)
When b<o, /2, n., is given by o, /2b—1/2 rounded to
the nearest integer. The oscillating upper critical temperature

tions and can be viewed as a standing wave between tf}‘gz(b) tends ton whenb vanishes as shown in Fig(a.
grain boundaries. The effects of Commensurability of thlSThe slab width is given by the width of the pOlynomial

wave with block widthl, stabilize either the even cos-like or

the odd sin-like behavior as the lowest state to have a va
ishing order parameter at the grain boundaries. The block

width |, changes as a function of that alternates the order
of thef.. eigenstates leading to the oscillationstjn(b).
The tendency to Sn& slab formation at lower tempera-
tures results in the further transition from the T¢&Bto
TGB(; phase determined by the lowest fram,t_ critical
temperatures renormalized by the nonlinear tefim|2y in

Eq. (7). Below this second transition, one of the populationsfy= *

rt' ncZ( \/BX_) as

1 p=0"?b. (18
The block profile function fncz(x_) oscillates as
cospx+7M) with period \=2m/(2ng,b)Y2=2m7/ 12,
This corresponds to the slab of the TgBphase, which is
the superposition of two Sr@- slabs with layers inclined at

o2, The parity off,(x) alternates wittn, resulting

starts to be suppressed and a block profile function is conn the different parity offncz andfnczil eigenstates. So, the

structed now from both the, andf _ eigenstates to form the
TGB; phase with either &, or fg profile of the slab.

Therefore, we conclude that tié¢*-TGB, transition is
always split by the intermediate TGB phase. At higtb the
period of oscillations of ..(x) becomes larger than its local-
ization length, and the lowest eigenstate(x) has the
single-peak profile of the TGB phase. TheN*-TGB4-
TGB¢~-TGB,, tetracritical pointM, corresponds therefore
to the highest irb intersection oft.. eigentemperatures. As
follows from Fig. 3, the appearance of the TgBphase
becomes practically invisible wheln decreases below the
second intersection df. at the pointM ;. We expect, there-
fore, that only the odd TGR, phase betweeM, and M,
can be observed in reality.

Equation(11) can be solved analytically in the two limit
caseso|=0 ando>1, when the operatot can be trun-
cated to a more simple form. Although the cage=0 does
not correspond to the real situation @f>1 we consider it

first since it clarifies the qualitative structure of the phase

diagram that conserves also at lakgg

B. Caseo =0

Wheno=0, operatorH is a polynomial Schidinger op-
erator for the harmonic oscillator:

H=0%—20, (- P>+b?x2)+(— > +b2x?)2.  (14)
Therefore, it has the same set of oscillator eigenfunctions:

fu(X)=Hp(Vbx)e x*02, (15)

admixture ofifnczﬂ eigenfunctions with the TGR, profile
function f,,  that occurs at some critical temperature below

te, corresponds to the TGR-TGB; transition.
The tetracritical pointM,, where N*-TGBA-TGB¢-
TGB(; phases meet is given ly=0, /2, t0=3<rf/4.

C. Caseo>1

In the limit o>1 one can negled?x?2 in Eq. (11) and
rewrite H as
H=(2+0,)2+0ob*x", (19)
The eigentemperatures and eigenfunctions of (£f) have
in addition to Eq.(12) the following scaling properties:

ta(b,0,0,)=0teo(ba Yo, ,1,2), (20)

fa(X,b,0y,00)=fa(a1x,baf o, ,1,2).

S0, tep(b,0,0,) at large oy is defined by the universal
functiont.,(b,1,1). We therefore use the scaled coordinates
bojlo, , t/a? for large oy to tracet ,(b) that is obtained
from numerical diagonalization of Eq19) [Fig. 3(c)].

An important conclusion that follows from Fig.(§ is
that the phase diagram for large possesses the same fea-
tures as foir=0. It includes the domains of the TGEand
TGB,, phases that precede the transition to the TGB
phase. The TGR phase exists above the tetracritical point
M, and the TGB, phase is important in between the points
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Mg, andM ;. From Fig. 3c) one locates the pointd,, M, at  requirement that the wavelength of the transversal modula-

bo}' o, =0.36 andbajY o, =0.19. tion \~a 2 is smaller than the block width , given by
Consider now the transition to the TGBphase at low Eq. (24). This clarifies the physical meaning of the approxi-

field b<0.360, /o™ (i.e., belowMg) and to the TGB,  mation.

phase at high field>0.360, /o (i.e., aboveM). Both

the asymptotics fott.,(b) are shown in Fig. @) by the 2. High fields: b>0.360, /o
dashed lines. Neglecting nows, in comparison withy? we simplify H
1. Low fields b<0.36, /o as
At low field when the block widthl , diverges, one can H=a4+ o b*x%. (25

assume that blocks have the structure of Sralabs where ] ) ) ]
the inclination of layers to the pitch axis is equal to its bulk Thentc; and the corresponding eigenfunction are given by

value 6,=*+arctanr’?>. Then the block's profile function

f(x_) has a high-frequency modulati@‘?i‘filzx_where+ and
— signs correspond to right and left tilting, respectively. This\yhere 1.39 andy,(7) are the lowest eigenvalue and eigen-
factor can be excluded by shift,—d,+io1?in Eq. (19.  function of the operatop? + 7*. Unlike the low field case,

Next, we neglec@i in comparison with 2&1’25)( (justification  the eigenstaté25) is nor?degenerate and described by the

of this approximation will be given belowand write’H as even bell-shaped functiog,, the lowest odd eigenstate be-
ing well separated frong, as shown in Fig. @).

H=—(20123,)2+ oyb*x%. (21 The eigenfunctiong,(cf’®¥?x) gives the TGB-like
profile of the block. The block widtH , is calculated using
the results of1] by noting thatg,(7)~ e °557";

teo=—13%1 b, feo(x)=0x(a]®¥x), (26)

Rescalingx as = (b*oy/do,)Y®x simplifies Eq.(21) to an
unharmonic oscillator operator:

H= (1602 ) V¥~ a2+ ¢4). (22) | =21 o %2, (27)

Finally, t.,(b) and the corresponding eigenfunction of Eq. _ The approximation we made is self-consistent since
(21) are given by (95)=1/17 is indeed greater tham, whenb>0.360, /oj".
Considering the truncated terim=20, 92+ ¢ as a pertur-
bation, one improves the asymptotic fige(b). The correc-
— oY% — tion to t, is given by(g,|h|g,)=2y01 > b+0? where

f = g™l b* o1 /4 16y , c2 y\S2 2 [ 1

c2(X) - 701(b%0 /4o ) TEX) y=(92/%|9,)=0.5. Finally, we get
wherg 1.06 andy,(¢) are the Iow_est eigenvalue and eigen— t ool 1 30,122
function of the unharmonic oscillator equation: 2= 0 01 0|

(—a§+§4)glz' 1..06;]'1. The blocli widJQl b IS estimgted as - _1_39(0“1/4b_0_3an)2+ 0-18‘Tf _ (29)
the characteristic width- (40, /b"c) ™™ of the functiong;.

More accurately, we can calculatg, in the same way as In fact, the asymptoti¢28) is valid also in the region of
was done in[1] for the TGB, phase, using the suitable small negatives, /b. It makes the analogous expressions in

Gaussian approximation fay;(¢) ase 04 Finally we get ]E141? more precise and explicitly determines all the coef-
icients.

teo= 07 —1.06/1607% o) ¥3p*?, (23

Tp=3.2Y40, Ib*o)*e. (24)
) ) ) D. Stability of the TGB ¢ state
At first glance, the eigenstai®3) is doubly degenerate i .
with respect to a sign change in the modulation phase Having calculated the transition temperature _and structure
ol H this i ifact of th . of the TGB¢; phase we discuss now its stability, namely,
e v 7. rowever, This 1S an artlact of the approXima- \yhether this phase has the highest upper critical temperature
tion: the termd; we are neglecting lifts the degeneracy andy , (or, alternatively, the highest upper critical field,y)

splits the transition onto two. In particular, in between theamong other TGB states and under which condition a tran-
points My and M, [Fig. 3(c)] d; favors the odd TGB;  sition fromN* to SmC* occurs via the intermediate TGB
phase given by the linear combinatioe“’@a—e*iﬂ )9, phase rather than via the direct first order transition.

—2ig,sino™?x. The TGB, profile appears by means of an To answer the first question, consider the competing

additional  transiton when the even combination | GBct and TGBc, phases that can be formed at the

oo e o i Dosors smaion o e e of
T_r12|s effe_c;, .however, IS as t”(‘ﬂl?zq neghgllt?;e_belovM v 2(Cy/2Dqg)¥=2(20) " which is larger than 1 as long

as(d,)=1/14 is smaller than(2o“dx)=20,1,, where 5 o>1. Therefore, bey(TGBcy) >beo(TGB:,) and the

lp is given by Eq.(24) and b<0.360, /oj"*. The above TGBc, phase is indeed more preferable.

estimation confirms the self-consistency of the approxima- Our calculations are in agreement with Dozov's estima-

tion we made. Conditiob<0.360, /oj"*is equivalent to the  tion. To show this, compart,(TGBc,) given by Eq.(23)
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with te,(TGBg,) calculated inf15]: TABLE |. Location of the tetracritical poinM, and the ratio

P Ip/14 in different limit cases. Parameter varies from 0 when
tea(TGBcp) =07 — 1.061+0) (1607 o) *3 (29)  Kia/K,=0 to 1.5 wherK, 5/K, is large.

(We recalculated the numerical factor 1,06he ratio of the Location ofMq /g2
upper critical fields for the TGB; and TGB;, phases(at bg to TGBA TGByq,ct
given temperatujeis expressed as (do)', which is b> b, b<by

larger than 1. This is consistent with Dozov’s estimation 5
whena>1, but gives a more precise value of the numerical”l<1 0.5, va 0'75‘73 0.8:/4 o, /2mb U3
factor. Although the starting GL functionah) is slighty ~ 1>1 0360, /oj™ 0431 0.7e0 e(40, Ibay)
different from that used if15] [see our remark after Eq. -

) L &The ratiol, /1 4
(4)], this does not change the final result: one can show th
in a relevant limit,o > o, , expressions fob.,(TGB,) cal-
culated for both the functionals are the same. Note that stan- " ) .
dard perturbational analysis proves that the TGBnd (31). The conditiong31) and (33) determine the position of

TGB, phases are stable with respect to small parallel tiltingh€ critical pointsM , andMc on theN* —SmA,C* transi-

of the layers when angle in Eq. (9) becomes nonzero. tion line of Fig. 1 where the TGB and TGB. phases first
To answer the second question, note that transition via affPP€a'-

intermediate TGB state is not preempted by the direct

N*-Sm transition when the upper critical temperattefor

the TGB state is larger than the thermodynamical tempera- . ]

turet, of the direct transition. Recall first the calculations for We have revised the calculations pf5] for the N*-

the TGB, phase whenr, <0 [1]. Comparison ot, given TGBj ¢t phase transition. The I|n_e of t_he upper critical tem-

by Eq.(13) [without (1+ 30/4)b?] with the N* —SmA tran- perature on phase diagram of Fig. 1 is reconstructed on the

sition temperaturelys o [EQ. (6)], which in dimensionless duantitative level and can be present in the relevant limit

is given at the transitiohN* -TGB whenT=T,. At
bwer temperaturek, /1 4 increases rapidly.

E. Resume

units is written as o>1 as follows: . . . .
On the left side of the poir¥ , that is defined by condi-
t.=(gK,)*%/Dg3 (30)  tion (31), the directN* —SmA first order transition takes

place. The critical temperature of the transition is given by

gives the following criterion for stability of the TGBphase:  (30).
3 21 3 Between the pointaM, and M the transition to the
Kk2>112, where «k,=(gKo/207)"42Dq3. (31) TGB, phase occurs. The pointM, is placed at
0.360, =0, inside the regionr, >0. The upper critical
temperaturd,, of the transition is given by Eq13) when
— o, /b>0.5+0.380, and by Eq.(28) when o, /b varies
from a small negative value to, /b=¢j"/0.36. Both the

When o, >0 thet., transition temperature for TG is
given by Eq.(23), and theN* -Sm-C* transition tempera-
ture Ty« c+ [EQ. (6)] in dimensionless units is written as

(gK,)Y2 asymptotics are matched in the intermediate region of nega-
te=0°— T (1= 0, Ku/2K3)b. (32 tive o, /b.
do In between the pointd, and M the sequence of tran-

sitions N* —~TGB,,-TGB;, takes place, the location of the

The criteriont.,>t, is always satisfied wheh is small point M¢ being given by the conditioni33). The TGBy,

enough, since at smal, t is linear inb andt, is propor- h e .
: : . . ase exists in a small temperature interval be It
tional tob*3, So, strictly speaking, one can always obtain thep P oy

; o ractically disappears on the right of the poit, where
TGB¢; phase by preparation of the nearly racemic blnar)}) 1/4 " -
mixture of the left and right chiral molecules. The aboveal/b>UH f0.19. The upper critical temperature in between

consideration is valid only if.(b) has a positive slope, that Mo andM is given by Eq.(23). The junction oft, transi-
is, wheno, <2K3/K,. This condition was used ii5,16 as tion lines for TGB, ar_1d TGByq/TGBc, phases forms a kink
a criterion for stability of the TGRB state. It is not very in the titrac.rlﬂcal_pom;\/l?l. . he di p
likely, however, to find a system where this condition will *On t e*ng t side of the poinkc the direct first order
not be the case since in conventional h-liquid crystals N .‘S”.”C transition occurs at the critical temperafige
o, <1 and K3/K,=4-6[19]. In contrast, the practical as is given by Eq(32). e
identification of this smalb TGB, phase can be quite dif- _ We have also calculated the width, of the TGB slab at
ficult because of the very large cholesteric pitch. We formu-T= Tc2 With respect to different parametelso, ,o [Egs.
late the realistic criterion for the existence of the TgB (17), (18), (24), and (27)]. We summarize these results in
phase as a condition when it is stable in the vicinity of theTable | by the ratid,/l4=1 /| d=I_§b/27-r, resulting from
critical point M. On the basis of the plot in Fig.(8, one the topological constraintl).
obtains that.,>t. nearM, if
U4 IV. ANALOGY WITH SPACE-MODULATED
K2>0.507 . (33 SUPERCONDUCTIVITY

At realistic values ofr=10-100[24] this condition practi- In this section we discuss a remarkable similarity between
cally coincides with criterion for stability of the TGBphase the TGB state and the mixgdortex statgin superconduct-
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ors of type Il noted first iM1]. We show that the TGB  vided by the gradient term witle, <0. The upper critical
phase corresponds to the mixed state in the “exotic” superfield of this superconductor is calculated by neglecting the
conductors with space modulated order parameter. nonlinear termg| ¥|2¥ and solving the corresponding eigen-
Note first that, due to de Genn¢$8,19 the N-SmA  problem. It is easy to show that# is chosen in the Landau
transition is analogous to the superconducting phase transjmuge (Bx,0), this procedure is exactly reduced to the case
tion because of similarity of the transformational properties: o)=0" we considered in Sec. Il B. According to calcula-

of the orglenr_r parameters: the space modulated functiofong of Sec. 111 B, this superconductor should have the os-

¥(r)=yoe®™" in SmA and the complex wave function jjating upper critical field, shown in Fig.(8).

W(r) in superconductor. The translation ¢{r) along the It is interesting to note that although the theory of space

modulation vectoggn (that is equivalent to multiplication o.f modulated superconductor was considered by Larkin and

_zp on a phase factpcorresponds to the gauge tranSformat'onOvchinnikov[ZO], and Fulde and Ferrg21] more than thirty

in the superconductor. - years ago, to our knowledge, no direct experimental obser-

The long range twist of(r) in N* plays the role of the : . .

magnetic field destroying superconductivity. TRE—-SmA vation of this phase currently exists.

trar?sition via the inteymegdiatg TGBphase oc.curs with con- Note finally another interesting analogy between the
N*-TGB, ¢t phase transition and tHg;, transition in ““un-

tinuous Meissner-like expulsion of the twist of The rows ol " d Rh
of the screw dislocations resemble the Abrikosov vortex lat.conventional” multicomponent superconductor YRthere

tice. the kinklike behavior ofB., was observed22]. The kink
The SmE phase is characterized by the additional, transP0iNt in Bez in UPts is similar to the pointM, in the
versal ton modulation of the order parameter resulted fromN*-TGB ct phase diagram: both points are provided by the
the negative gradient terms in the CL model. Continuing thdntersection of eigenstates of the corresponding linearized
analogy with superconductivity one can tell tideSmC  GL equations.
transition corresponds to the transition to the superconduct-
ing state with nonuniform, space modulated order parameter.
The TGB. phase therefore should be an analog of the mixed ACKNOWLEDGMENTS
(Abrikosov) state of a modulated superconductor, providing
that magnetic field is perpendicular to the modulation.
On the quantitative level, the modulated superconducto
in a magnetic field is described by the GL equation
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